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We introduce the framework of the Gaussian random-matrix process as an extension of Dyson’s
Gaussian ensembles and use it to discuss the statistical properties of complex quantum systems that
depend on an external parameter. We classify the Gaussian processes according to the short-distance
diffusive behavior of their energy levels and demonstrate that all parametric correlation functions
become universal upon the appropriate scaling of the parameter. The class of differentiable Gaussian
processes is identified as the relevant one for most physical systems. We reproduce the known spectral
correlators and compute eigenfunction correlators in their universal form. Numerical evidence from
both a chaotic model and weakly disordered model confirms our predictions.

PACS number(s): 05.45.+b, 21.60.—n, 71.25.—s, 05.40.+j

I. INTRODUCTION

Wigner [1] suggested that the statistical properties of
the compound nucleus can be described by a random
N x N Hamiltonian matrix whose elements are indepen-
dent Gaussian variables. This led to the development of
random matrix theory (RMT) [2], which has been suc-
cessful in describing statistical fluctuations of spectra and
eigenfunctions in complex quantum systems drawn from
several fields of physics. These include interacting many-
body systems such as atomic nuclei [3] and strongly cor-
related electron models [4], and systems with weak im-
purity disorder such as quantum wires [5] and quantum
dots [6]. There is strong evidence that all systems that
are classically chaotic obey the RMT predictions. This
is the case even for systems with few degrees of freedom
such as billiard models [7] and the hydrogen atom in a
strong magnetic field [8].

It has recently been discovered that when these sys-
tems are allowed to depend on a parameter (e.g., an
external field), the correlations between spectra belong-
ing to different values of the parameter become univer-
sal upon an appropriate scaling of the parameter [9-11].
Such universal correlators are the level velocity and the
level density correlators. The latter was derived in a
closed form using the supersymmetry method [12] for
both a specific random-matrix model and for a weakly
disordered single-electron system in an external field and
was also shown [13] to correspond to the spatiotemporal
particle density correlations in the completely integrable
Sutherland-Calogero-Moser model [14,15].

More recently, we have introduced the general frame-
work of the Gaussian process (GP) [16] as a natural
extension of the Gaussian ensemble that incorporates a
parametric dependence and demonstrated that it could
be used to obtain the universal form of any correlator. In
particular, we computed several universal eigenfunction
correlators in the orthogonal case.

In this paper we discuss the theory of the Gaussian
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process in detail. We show that the different processes
are classified according to the diffusive short-distance be-
havior of their unfolded energy levels AeZ = DAz" [16],
where 0 < 7 < 2 and D plays the role of the diffusion
constant. The levels of GPs in the class n = 1, which in-
cludes Dyson’s Brownian motion model [17], execute or-
dinary diffusion whereas 7 # 1 processes exhibit anoma-
lous diffusion [18]. We introduce the parameter scaling
z — & = D7z and demonstrate that all correlators
become universal functions of #7/2 under this scaling.
We show that there are no GPs with n > 2 and that
the n = 2 processes form the class of differentiable GPs,
which is the relevant one for describing most physical
systems. Indeed, all the calculations in [10,13] have been
performed in 7 = 2 models and our scaling procedure re-
duces in this case to the level-velocity scaling introduced
there. The advantage of our approach is that we can
calculate (by numerical simulations) the universal form
of any parametric correlator that involves the spectra
and/or the eigenfunctions through the choice of a simple
GP that is easy to construct. The supersymmetry tech-
nique, while powerful in deriving analytic expressions, is
limited to particular correlators that can be expressed in
terms of Green functions.

We discuss different types of GPs: continuous, peri-
odic, and discrete. The latter are particularly impor-
tant for numerical constructions of the process. For a
translation-invariant GP where the correlations depend
only on the distance = — z’, it is convenient to work in
the Fourier space k conjugate to the parameter space x
since matrices at different values of k are independent.
We define the elementary Gaussian process & and use
it to describe various constructions of the GP in x and
k space. A discrete GP for several values of 7 is con-
structed numerically and used to obtain predictions for
a number of eigenfunction correlators in their universal
form in both the orthogonal and unitary cases. Other
correlators are calculated analytically using the super-
symmmetry method [12]. We confirm these predictions by

4776 ©1995 The American Physical Society



52 GAUSSIAN RANDOM-MATRIX PROCESS AND UNIVERSAL ...

numerical simulations of chaotic and disordered model
systems.

The outline of this paper is as follows. In Sec. II
we present the GP framework and discuss the different
types and classes. Some examples are given. In Sec. III
we derive the scaling and the resulting universality of all
parametric correlators. In Sec. IV we obtain the uni-
versal form of several eigenfunction correlators. Finally,
in Secs. V and VI we compute these correlators in two
models, a disordered system (the Anderson model) and
a chaotic system (the interacting boson model of nuclei)
and demonstrate that they take the universal form upon
scaling [16]. The latter model also has regular regimes
in its parameter space where we observe deviations from
universality. Some details of our supersymmetry calcula-
tion are provided in the Appendix.

II. THE GAUSSIAN RANDOM-MATRIX
PROCESS

A. The continuous Gaussian process

Dyson [19] showed that there are only three possi-
ble Gaussian ensembles (GEs) that can characterize a
complex physical system, depending on its symmetry.
If time-reversal symmetry is conserved, the probability
measure is invariant under orthogonal transformations,
defining the Gaussian orthogonal ensemble (GOE) of real
symmetric matrices. If time-reversal symmetry is broken,
the measure is invariant under unitary transformations,
defining the Gaussian unitary ensemble (GUE) of com-
plex Hermitian matrices. Finally, if rotational invariance
is broken and the total angular momentum is a half-odd
integer, the probability measure is invariant under sym-
plectic transformations and the corresponding Gaussian
symplectic ensemble (GSE) consists of complex self-dual
matrices. The corresponding ensembles are labeled by g,
the number of independent components of each matrix
element, where 3 is 1 for the GOE, 2 for the GUE, and
4 for the GSE. Only the cases 3 = 1,2 are treated here.

There are many physical situations in which the above
systems depend on some parameter z, e.g., the shape of
a billiard or an external magnetic field. The class of sta-
tistical properties that are of interest then broadens to
include correlations between observables at different pa-
rameter values. It is natural to expect that if for all values
of z the system belongs to the same symmetry class and
its statistical properties are given correctly by the same
corresponding GE (e.g., the system is chaotic or weakly
disordered at all values of z), these parametric correla-
tors can be obtained from an appropriate generalization
of the GE that incorporates this parametric dependence.
Such a framework is provided by the GP [16]. A GP is
a set of random N x N matrices H(x) whose elements
are distributed at each x according to the appropriate GE
with a prescribed correlation among elements at different
values of z:
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H(z) =0,
7 a® . (8)
H;j(z)Hu(z') = 2‘[@‘]:(-7371' )gij,kl ) (1)
where
g,gf,fll) = 8ikbj1 + Sudjk
gzg_g:lz) = 26,01 - (2)

The matrices H(x) are real symmetric for 8 = 1 or com-
plex Hermitian for # = 2. Notice that f must be sym-
metric in z and z’ and that relations (1) reduce to the
standard GE moments when z = 2’ if f(z,z) = 1. We
shall be concerned with processes that are translational
invariant, i.e., all correlators depend on the distance z—z’
rather than on = and z’ separately. The process corre-
lation function f (which is symmetric) should therefore
satisfy

fla,2') = f(le - 2')),
fO)=1. (3)

A GP is equivalently defined by its probability measure

P(H(z))dH(z) x exp{———z—i—z / dzde’ Te[H (2) K (z,2)

xH(:c’)]}dH(:c) , (4)

directly generalizing the GE measure. Since the distri-
bution (4) is Gaussian, the first two moments in (1) com-
pletely determine the GP. The relation between the cor-
relation function f and K in (4) will be discussed below.
The distribution (4) is invariant under z-independent or-
thogonal transformations for 8 = 1 and unitary transfor-
mations for 8 = 2. The corresponding GPs are termed
the Gaussian orthogonal process (GOP) and the Gaus-
sian unitary process (GUP).

The quadratic form that appears in the exponent of
the GP measure (4) can be diagonalized by a Fourier
transformation

3 dz —ikx — I(_

H(k) = N ke H(z) = H(—k)! (5)
to give
P(H(k))dH (k)

o exp (—5% /dkR(k)Tr[fI(—k)ﬁ(k)]) dH (k) , (6)
where K (k) is the Fourier transform of K (x)

Kz —z') = /;—:eik("_”")f{(k) . (7)

The process H(k) is d-function correlated but has a
nonuniform variance determined by K (k), which is there-
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fore required to be non-negative. Being Gaussian, it is
completely specified by its lowest two moments

Hi(k)=0,
oo = &7 g ®)
H;j(k)Hp (k') = Eﬁf(k)‘s(k + k)95 k5 (8)
where f(k) is the Fourier transform of f(z — z'). Com-
paring with (6) it follows that K (z—x') is just the inverse
of f(z — 2') in Fourier space,
K(k)=f"'(k). 9)

Since f(z) is real and symmetric about # = 0 and K (k)
is non-negative we have

f(k) = F(=k) = f*(k) ,

with K (k) having the exact same properties. Formally
(7) can be written as

f(k) >0, (10)

K(z —a') = f~1(—id/8z) §(z — z') . (11)

Unlike H (x), the matrices H(k) are not Hermitian and

hence are not members of any of Dyson’s GEs. It is
therefore advantageous to define new matrices
- 1 1= -
B (k) = — —
A K) = = [AF) + B(-R)]
T k) = 2 [Fk) - 8(—
HO) (k) ﬁ[H(k) H( k)] . (12)

As a consequence of (5) the matrices H(¥) (k) that satisfy
H®)(—k) = £ H®) (k) are real symmetric for 3 = 1 and
complex Hermitian for 8 = 2. Their distribution law is
given by

(%) —
H;:7 (k) =0,

2
T (£ a” =
Hi(j )(k)HIE:l )(kl) — —ZEf(k)J(k - k')g,(ﬁl )

B (AP (k) =0 (13)

for k,k’ > 0, indicating that H®) (k) belong to the ap-
propriate GE at each k. This property makes it more
convenient to work with H(¥) (k) rather than H(k) in an
actual numerical construction of a GP.

The simplest GP is the §-function correlated process
f(z — z') = 8(z — z'), which consists of a set of inde-
pendent random matrices ®(z) that belong to the ap-
propriate GE and have the same variance. The corre-
sponding probability distribution is given by (4) with
K(x—2') = §(z — z'). The Fourier transform of the pro-
cess ®(k) satisfies (8) with f(k) = 1 and thus remains
d-function correlated with a uniform variance. Note that
this process’s correlation function f(xz — z') = §(xz — z')
does not satisfy the normalization condition in (3). How-
ever, we shall demonstrate now that ®(z) is the basic el-
ement in the construction of any GP and we term it the
elementary Gaussian process (EGP).
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H(k) in (8) can be simply related to the Fourier trans-
form ®(k) of the EGP through

H(k) = @ (k)®(k), (14)
where w(k) satisfies

w(—k) =a*(k), |@(k) = f(k). (15)

Hence the process H(z) can be represented as

dzx ikx ~ F
-t OLID) (16)

or alternatively as a convolution of the EGP ®(z) with
a weight function w(z)

H(z) = /d:c'w(:c —z")®(z') . 17)

I~I(x) =

Here w(zx) is the inverse Fourier transform of w(k), which
is guaranteed to be real due to the first condition in (15).
Note that the second condition there implies a phase am-
biguity in @(k),

b(k) = |F (k)26 6(=k) = —0(k) . (18)

Different choices of (k) would produce different con-
structions (16) and (17) of the same process H(z) since
its probability distribution depends on f(k) alone. Note
that it follows from (15) that f(z) = [dz'w(z —
z')w(—a'), ie., f(z) is the convolution of w(z) with
w(—x). The representation (17) was introduced in Ref.
[20] to study the statistics of avoided crossings in chaotic
systems.

We now present several examples of Gaussian processes
with various correlation functions. First we consider the
Ornstein-Uhlenbeck GP [21] with exponentially decaying
correlations

fz) =, (19)

where v > 0. In Fourier space the correlation be-
comes a Lorentzian f(k) = 2v(y2 + k2)~!. The choice
w(k) = v/2v(y+1ik) ™!, which satisfies (15), produces the
weight function w(z) = /27e~7®0(z), yielding the cor-
responding constructions of the process H(z) from the

EGP &(x)
_ dk meikm -
H(z) = Tt 2

= /dw'me—”(z_”')@(z—:c')<I>(:L") . (20)
An alternative choice of w(k) that differs by a phase from
the previous one is w(k) = /2v(y? + k?)~1/2, producing
the weight function w(z) = @Ko(')']z]), where K is
the modified Bessel function of order zero. The corre-
sponding GP constructions in this case are

dk  \/2yeike <i>(k)
V2T /2% + k2

_ /dw'@m (vlz — 2'|) B(a") . (21)

H(z) =
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The function K(z — ') that characterizes the process
(19) is easily found from (11) to be K(z — z')
(1/2v) (v2 — 8%/08x?) 6(x — z') giving the process proba-
blity distribution

P(H(z)) exp{-—é—g—Z/dazTr[% (%)2
+§[H(m)}2} } :

The continuous matrix model associated with (22) whose
partition function is Z = [ D[H(z)|P(H(z)) was shown
in Ref. [22] to be related to the Sutherland-Calogero-
Moser class of interacting fermions in one dimension
[14,15], which is in turn related to the spectral parametric
correlators [13,23].

The second representation in (20) is just the solution
to the well-known Brownian motion model of Dyson [17]
defined by

(22)

Hij = —yHij + F5(2) (23)

if we identify z < t and ® < F. + in (23) plays the
role of the friction coefficient and F;;(t) are the random
forces

Fij (t) =0
Fi ) Fu(t) = T6(t —t')g%), .

This model is equivalent to a Fokker-Planck equation for
the matrix distribution P(H t)

oP 9
Bt BH

(24)

3 @ 0P
HiP) + 5T 9.5 9 H ;O H,

(25)
For any initial distribution P(H,t = 0), as t — oo
the solution of (25) approaches the GE distribution
P(H) o exp(—BTrH?/2a?), which is the equilibrium so-
lution, where we used the fluctuation-dissipation theo-
rem gffl,l"/?y = |H”|2 to get I'/v = a?/B. Therefore,
if the initial distribution is chosen to be P(H) we have
P(H,t) = P(H) at all t, so H(t) constitutes a GP with
f(t—t') = exp(—t — t']).

As a second example we consider the GP with Gaussian
correlations

fla)=e" (26)
; £ = [mo—K?/4vy ;
for which f(k) = \/: e . The constructions (16)

and (17) of H(z) are both given in terms of Gaussian
weight functions

H(z) = _d\/kz eike (;—’)1/4e—’c’/87<i>(k)

1/4
= /d:z:' (4—7) 6_27(“’—‘”')2@(93) ,
™

whereas K (z — z’) can be formally written as a general-
2 2
ized function K (z — z') = \/y/me~ &2 /%% §(z — 2').
It is shown in Sec. III that the parametric correlators,
which are the focus of this work, are determined by the
short-distance behavior of the process correlation func-

(27)
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tion
f(z) =~ (n>0)

rather than by its full functional form. After an appropri-
ate scaling z — Z all correlators become universal func-
tions of |AZ|". It is therefore interesting to construct GPs
for different values of . For n = 1 and 5 = 2 this has
been done above in the form of the exponentially cor-
related (20) and (21) and the Gaussian-correlated (27)
processes. A family of GPs with 0 < n < 2 is given by
the correlation functions

1— klz|? (28)

21—7]/2

f(z) = ey |72 Ky 2(|))
1Ir(1-12) "
- 2_"1“—(_——3| z|?, (29)

where K, is the modified Bessel function of fractional

order 1/ The Fourier transform of (29) is f(k)
2f NG /2) ( + 1)“'% and yields the representations

H(zx) = 21/2,1/4 2 : b(k
= [%’}/W(kz)@()

- (%) s B

X /da:'|a: —m'|ﬂ4;1Kl}g(|:v —z'|)®(z') .

(30)

Note that when n = 1, f(z) in (29) is just e~!*l and (30)
reduces to (21) with v = 1. Note also that f(z) defined
in (29) is of the general form f(z) = g1(z?) — |z|"g2(z?),
where g; and g, are analytic functions of z2, thus 1 > 2
in (29) gives a GP with n = 2. In Sec. IID we prove that
there are no processes with n > 2.

B. The periodic Gaussian process

There are many physical situations where the depen-
dence of the Hamiltonian on an external parameter is
periodic. This is the case for a metallic ring threaded by
a magnetic field whose energies and eigenfunctions are
periodic in the flux where the period is the flux quan-
tum ¢9 = hc/e. A random-matrix model that mim-
ics this situation is the periodic GP characterized by
H(z + L) = H(z), where L is the period. Its correla-
tion function is also periodic and can be expanded in a
Fourier series

oo

27rn —z')
$ 23 Fcos TMEZT) ()

n>0

with f, = f_,, > 0. Similarly to (4) and (6) the proba-
bility distribution is given by



4780

B [* dada’ i’
2a2 J, L?

n=—oo

;27n Nz
1270 (p—2') £F—1
e''r fn

P(H(z)) x exp{

XT‘I‘[H(I)H(w')]}

o exp [—-2!2—2— Z f;lTr(fI_nﬁn)} ,  (32)

where H, = [dze™**%"*H(z)/vL = H', and the prime
on the n sum indicates that only fn > 0 should be
summed over. The preceding discussion leading to the
constructions (16) and (17) can be carried over to the
periodic case with minor modifications arising from the
discreteness of Fourier space. The construction analo-
gous to (16) is

oo

n=-—oo

fo 5 (+) an |: (27"”3) i (+)
:“—‘I)O +E — |cos | —— | &,,
2L = L L
2mnx \ =
i (=)
+sm( I ) Ny :| )

where ésli) is the discrete version of the Fourier-space

EGP &™) (k) [see (12)]

(33)

iz
= 2
~(i)] [&,(i) _s
[q)" G L™ 28™" izt >
¥ B9 -
[ " ]ij &n P 0, (34)

which consists of independent random matrices from the
appropriate GE. The representation (33) is advantageous
when the number of fn > 0 is finite since it can then be
easily employed in a numerical construction of the GP,
as we do in the following sections. Note that any process
so constructed would necessarily have n = 2.

Finally, the corresponding z-spacé representation (17)
in terms of the EGP ®(z) is

H(x):/o \/EHZ\/f:

n>0
x®(z') .

27rn(:1: — :c')jl

(35)

C. The discrete Gaussian process

An actual construction of a process H(z) on a com-
puter requires a representation in terms of a finite num-
ber of random elements. An arbitrary correlation func-
tion f(z) has in general infinitely many Fourier com-
ponents fo > 0 when restricted to a finite interval
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z € [0,L]. To make their number finite we must use
a discrete process H,, = H(z,) with a finite number
of points z,,. We take 2M + 1 equally spaced points
Tm =mL/(2M + 1), m =0,...,2M, and write
_ fo 2
o) = opr1 T aM 1

M
~ 2mn(x,, —
foncos—(—’i——’l‘il,
n=1

f(zm

i7 (36)

exploiting the discrete orthonormality of the functions
exp (i232x,) /V2M +1 (n=0,...,2M) over the set of
quadrature points z,,. Following the previous discussion,
we obtain the finite construction for H,,

fo 5 (+)
H,=}\-—"=%
2(2M +1)
M o
2fn 2rnm \ =
_2dn SET ) )
2\ [ms (2M+ 1) n

(37)

Note that since we continue f(xz) from the interval
[-L/2,L/2], periodically only H,, Hp, with |m —m/| <
M have the required correlation. Using (37) it is easy to
generate a GP for any given f(z) with 0 < n < 2 (see
Sec. III).

Given a continuous process H(z), any partial set of
points ,, (not necessarily equally spaced) gives rise to
a discrete GP H,, = H(x,,), since any marginal distri-
bution of a Gaussian distribution remains Gaussian. To
construct a discrete GP when z,, are not equally spaced
we write

2M+1
fmm’ = f(mm - mm’) = Z A'nIJm'n-Pm'n )

n=1

(38)

where \,, > 0 are the eigenvalues of the matrix f,,»' and
P, is the orthogonal matrix that diagonalizes f,,,,,'. We
then obtain the construction

2M+1

n=1

(39)

in analogy with (37), where ®,, are independent and be-
long to the appropriate GE. The probability distribution

8 2M+1
P[H,,] x exp ~ 542 Z’-l Kt TrHyp H o
is obtained from
2M+1
Kot = Z A Prn P -
n=1

In the case of the discrete Ornstein-Uhlenbeck GP (19),
where fom' = exp(—7y|Zm — Tm|), P[H] can be cal-
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culated analytically using the Markov property of the
process to give

3 2M+1
P[H,,] x exp{—ia—zTr[Hg + Z (Hm
m=2

~fmm-1Hm-1)?/(1 - f'ri,m—-l):l } - (40)

For equal spacings the eigenvalues ), reduce to the
Fourier coefficients f, of (36) and the eigenvectors Pp,,

become linear combinations of exp (zZ’I‘:—"xm)

D. The differentiable Gaussian process

In most physical applications the Hamiltonian is an
analytic or at least a differentiable function of the pa-
rameter z. It is therefore important to identify the class
of GPs that are differentiable. A differentiable GP is de-
fined by the property that almost every one of its mem-
bers H(z) is a differentiable function of =z with a con-
tinuous derivative dH/dx. We now show that this class
consists of the processes with n = 2.

To see that any GP with n = 2 is differentiable, note
first that in this case

o 10 = £(@)

z—0 x?

< o0. (41)

Considering the quantity

Hij(l'-l—é) ——Hij(x) Hij(:l:+5) —H,-]-(:c) 2
- 5 ’ (42)

€

it is easy to show that it approaches zero as € and § both
approach zero independently, by using (1) to express the
left-hand side of (42) in terms of the f(z) and then using
(41). It follows that for each realization of the GP, the
quantity [H(z + €) — H(x)]/e converges in the mean to
a process, which we define to be the derivative process
dH/dz,

2

Hij(z +€) — Hij(z) dHi;|" _ 0. (43)

€ dzx

lim

€—0

Next, to see that dH/dz is continuous note that

2

x f"(O) _ f”(a: _ w/)

(@ - S8 (=)

dHij
dz

and approaches zero as ' — z if the second deriva-
tive f”(z) is continuous at x = 0. The existence
and continuity of f”(z) for all = follows from f"(z) =
— [ etk=k2 f (k)dk, whose absolute convergence is guaran-
teed by (41).

The converse is also true: if a GP is differentiable with
| dH;j/dx |2 < oo, then it is a n = 2 process. Indeed, in
this case
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F0)—f(z) _28 1 |dHy|®
T a? g(f’) | d=z
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lim
z—0 x2

< oo, (44)

implying > 2. However, a GP with 5 > 2 would have
| dH;;/dx |2 = 0 and consequently H;;(x) = const for
almost all members of the process, corresponding to n =
0 instead. Hence this GP must have n = 2. For example,
although the derivative of the n = 1 Ornstein-Uhlenbeck
GP (20) exists: dH/dz = —yH (z) + +/27®(z), it is not
continuous and its variance | dH;;/dx |2 diverges.

As a consequence of the nonexistence of the > 2 pro-
cesses, the Fourier transform f(k) of any correlation func-
tion f(z) whose short-distance behavior (28) has n > 2
is negative for some k and the corresponding GP mea-
sure is unnormalizable. This is confirmed numerically in
Sec. III.

E. The conditional two-matrix distribution

We shall be interested in calculating two-point corre-
lation functions of the form

o) = TELZZ ()

02-0

c(z,z') = O(z)O(z') ,

where O(z) is any function of the spectrum and eigen-
functions of H(z) (i.e., its matrix elements). Since the
process is translational invariant O(z) = O(z') = O.
The correlator c(z,z’) depends only on H(z), H(z') for
z # «' (for z = z’, ¢ = 1) and is determined by the joint
two-matrix distribution

P(H(z), H(z')) exp{—{—j;m[ﬂ(w)lz + HEP

—2fH(z)H(z')}/(1 - fz)} (46)

rather than by the full process distribution (4). Here
f = f(Jz — 2'|), implying that ¢(z,z’) = ¢(|z — z'|). The
distribution (46) can be obtained by integrating over all
matrix elements of H(z") where =’ # x,z’ in (4). All
integrations are Gaussian and can be performed exactly.
However, in order to derive (46) it is sufficient to observe
that these integrations result in a Gaussian distribution
and therefore has the general form

P(H(z),H(z')) o exp ( — Tr{uyi [H(z)]* + ugz[H ("))
—2uH(z)H(z')}) . (47)

The coefficients in (47) are found by requiring that (1)
be satisfied, or equivalently

—1 2
Uil Uz 2a 1 f
= — 48
(U12 uzz) B(f 1)’ (48)
which gives (46). For actual calculations of GP averages
involving H(z) and H(z'), which are carried out below,
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it is useful to also have the conditional two-matrix dis-
tribution

P(H(2') | H(=))

= P(H(2), H(z)/P(H(2))
xexp {~ 5T (H) — SHE /1= ) . (49)

III. SCALING AND UNIVERSALITY

Consider the parametric correlator (PC) c¢(z — z') in
(45). In general it depends on the parameters a, f(x—z’),
and N, which characterize the GP. In this section we
present a scaling procedure that eliminates this depen-
dence and results in a GP-independent form of c(z —z’).
We shall demonstrate that this form is universal. Al-
though calculating c(z — ') in a given physical system
produces a system-dependent function, upon scaling it
becomes system independent and identical to the scaled
GP result. For n = 2, the scaling reduces to that intro-
duced in [10].

To make a correspondence between the GP and a par-
ticular physical system we recall that a sets the mean
level spacing A at the center of the spectrum through
A = 1/p(0) = ma/v/2N, where p(E) is the level den-
sity. It is easy to show that the energy scaling (unfold-
ing) E; —» ¢ = E;/A leaves c(z — z') independent of
a. Indeed the joint two-matrix distribution (46) can be
rewritten explicitly in terms of the unfolded energies ¢;, €,
and eigenfunctions ;, ¥} of H(x), H(z')

i

P(H(2), H(z") exp{—% [Z(e? + )

—Zfzﬁifljl(% | ¢§)|2] /(1 —fz)} .

(50)

Thus for any quantity O(e;,;), the average OO’ taken
using (50) is a independent.

Next we wish to perform a scaling that eliminates the
dependence on f(x — z’). We begin by writing down the
expansion of f to leading order in z — z'

flz—2z")=1-klz —2'|", (51)
with the constants x and n > 0 whose significance will
be discussed below. Following [10], which introduced
the variance of the level velocity (8¢;/8z)%, we shall
show more generally that the quantity Ae?/Az” in the
limit Az — 0 emerges as the relevant one to consider
[16,24]. To calculate the average AE? we use first-order
perturbation theory AFE; = (¢;|H' — H|vy;), where 1;
are the eigenfunctions of H = H(x) with energies E;
and H' = H(z'). Motivated by the functional form
of the conditional probability measure (49) we rewrite
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H' —H=H'— fH — (1 — f)H and obtain

AE} = |(¢:H' — fHY:)|” + (1 - f)*E?
—2(1 — f)E; Re{v;|H' — fH|;) .

We perform the GP averaging of (52) in two steps. First,
using the conditional distribution (49) we average over
H' while keeping H fixed. The first term on the right-
hand side of (52) gives a?(1 — f2)/8 and the last term
vanishes; hence as N — oo

(52)

202k
B

Equation (53) describes how the energy levels diffuse as
the parameter varies. For the diffusive behavior of the
scaled levels we get

AE? = |Az|" + O (|Az|®) . (53)

Ae? = D|Az|" + O (|Az|?) (54)
where we define
3 KE? 4Nk
b= Alalclﬂo Az w2B 7 (55)

D plays the role of the short-time diffusion constant. The
case 7 = 1 is that of ordinary diffusion and corresponds
to Dyson’s Brownian motion model [17], which has f(t —
t') = exp(—y|t — t'|) = 1 — y|t — t/|. For n # 1 we have
anomalous diffusion [18].

The level diffusion law (54) motivates the parameter
scaling

z— &=DY". (56)

We now show that the diffusion scaling (56) eliminates
the dependence of c(z — ') (45) on f. In terms of Z, the
short-distance behavior of the process correlation func-
tion given in (51) is

" (57)

In Sec. IV we shall see that the correlations measured
by c(Z) decay at T ~ 1; therefore for large N the short-
distance expansion of f in (51) and (57) is justified. In
addition, we make the following conjecture: for large N,
all PCs c¢(Z — ') [see (45)] depend on N and f only
through the combination N [1 — f(Z — #’)]. Using (51)
and (57) we have

NA-f)=Nup—zP="jz a5 (59)
thus it follows from our conjecture that all PCs are uni-
versal functions of (£ — Z'|7. This is the main result of
this section.

Although we do not have a rigorous proof for the above
conjecture, we have strong evidence in its favor. Two PCs
that can be calculated analytically, the density correla-
tor (64) and the energy-dependent parametric overlap
(74), explicitly show N(1 — f) dependence. Numerical
demonstrations of the universality of several PCs after
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the scaling (56) also support this conjecture. These two
forms of evidence are discussed in Sec. IV.

Here we give a physical “derivation” of this conjecture.
We first concentrate on the Dyson process (23) and argue
that its PCs are independent of N in the limit of large
N if we choose the friction constant v o< 7. According
to Dyson [17] the eigenvalues of H(t) describe a diffu-
sive Coulomb gas that has two distinct time scales: the
microscopic time scale ¢t ~ (yNN)™! to reach local thermo-
dynamic equilibrium and the macroscopic time scale t ~
=1 that is required to reach global equilibrium. To ob-
tain N-independent correlations, it is necessary that the
microscopic time scale will be independent of N, which
leads us to the choice vy = 1. A GP with a general cor-
relation f would lead to correlations similar to the Dyson
process if we can identify f(z — ') ¢ exp (— %t — t']).
In the limit of large N and upon using (51) this is equiv-
alent to N(1 — f) = 22|z — /|7 & |t — t'|. Thus the
PCs are completely determined by the combination in
(58).

For the special case of n = 2 in (51), the diffusion scal-
ing factor v/D in (55) and (56) is just the level velocity
scaling factor

D=C(0) = (‘ZT“)E : (59)

The C(0) scaling was first discussed in [10], where it was
derived using the supersymmetry method and shown to
lead to the universality of two spectral PCs, the level
velocity (numerically) and the level density (analyti-
cally). Beyond spectral correlations, two PCs involving
the eigenfunctions that could be calculated analytically,
the oscillator strength function PC [25] and the conduc-
tance PC in open multichannel quantum dots [26], were
also shown to become universal upon the C(0) scaling, all
using the supersymmetry method [12]. The GP frame-
work has the advantage that the universality of all PCs
under this scaling emerges quite simply and naturally.
Furthermore, in this framework it is evident that the level
velocity scaling is not the correct procedure for  # 2. In
particular, for 7 < 2 the process is not differentiable and
the scaling factor of Ref. [10] C(0) = Ae?/Az? diverges
as C(0) ox Az"2 [see (54)]. For n > 2 we conclude from

(54) that (9¢;/dz)? = 0, in accord with our result in Sec.
IID.

In order to demonstrate the use of the more general
scaling (56) we construct numerically several discrete
GPs using the construction method described in Sec. IIC
[see (36) and (37)] with the correlation function

fl@) =enl=l", (60)
which has the short-distance behavior (51). We find

numerically that the Fourier components f; are non-
negative only for n < 2 (see Sec. IID). Figure 1 shows
the energy levels as a function of Z for a typical mem-
ber H(z) of the GP for n = 1,3/2, and 2. For n = 2
the energy levels are smooth and differentiable as a func-
tion of . However, as 7 decreases the energy levels show
a more irregular behavior with stronger fluctuations at
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FIG. 1. Top: several energy levels from the middle of the
spectrum as a function of Z for different values of 7, obtained
from a simulation of the GP (37) with the process correlation
function f(z) = e~ !*I" (60) for n = 1,3/2 and the GP (63) for
7 = 2. The values N = 150 and k = 0.5 are used. Bottom:
the function f(z) (60).

small scales. This apparent indifferentiability is consis-
tent with the divergence of C(0) for n < 2. Nevertheless,
from the above discussion it follows that the level diffu-
sion PC [e;(z) — €;(z’)]? is a universal function of |z—z'|".
Its functional form at short distances is obtained by the
scaling of (54)

Ae? = |Az|" + O (| Az *7) (61)

and manifests its independence of any parameter but
time-reversal symmetry status. We verify this univer-
sality by computing Ae? at different N, x, and . The
results are presented in Fig. 2 and show a universal form
in the different cases when plotted as a function of |AZ|".
We also demonstrate that the short-distance behavior is

GOP GUP
T T T T
1.0 + T‘ 1
0.10 T 0.10
0.05 @ 3 0.05 E
0.00 0.00
oooso. | 0 0.060.1

1
1 2
AX"

FIG. 2. Level-diffusion correlator [e;(z) —€:(2')]2 as a
function of |£ — Z'|” in the orthogonal (left) and unitary
(right) cases, obtained from 100 simulations of the GP
(37) with the process correlation function (60). The val-
ues N = 150, « = 0.5, and 7 = 1 (diamonds) and
N =100, x = 1.0, and n = 1.5 (circles) were used, taking
the middle third of the spectrum in each case. The dashed
line is calculated from the simple n = 2 GP (63). The dotted
line shows for each symmetry class (i.e., orthogonal or uni-
tary) the universal curve of the other one. The inset shows
the short-distance behavior (61) predicted to be linear with a
unit slope (dotted).
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linear with a unit slope, a result that is essential to the
scaling (56) used throughout this paper.

Finally, we would like to point out the N scaling in the
GP. Comparing the calculations of a PC within two GPs
that are identical except for their values of IV, it follows
from (55) that the scaling * — Z = N7z would make
them equivalent. This will also be shown explicitly for a
particular PC (with n = 2) in the next section and means
that /the typical correlation length in the GP scales like
N1/,

IV. UNIVERSAL CORRELATORS

In this section we calculate several correlators and
demonstrate their universality upon the scaling (56)
within the GP framework. We reproduce the spectral
correlators of [10], but more importantly we obtain new
parametric correlators that involve the eigenfunctions for
both the orthogonal [16] and unitary cases. Some of these
correlators are computed from numerical simulations of
a simple GP and others are calculated analytically using
the supersymmetry method of Ref. [12].

A. A simple GP and spectral correlations

The level velocity PC

c(x —a') = v(z)v(z') ,
’U(.’B) - v _ Oe;
—— v(z) = %(J")

=2

o=} = v2 -7

(62)
was introduced in [10], where it was shown to become
universal after the parameter is scaled by the rms level
velocity 4/C(0) = VD [see (59)]. This result was based
on numerical simulations of the Anderson model and the
universal form of the level velocity correlator c(Z) was
obtained in the same manner. However, in the GP frame-
work, our argument in Sec. III for the universality of all
correlators implies the universality of c(x) as well and its
universal form can be computed directly from any GP.
Here and in all the following computations of universal
PCs, we use the simple 7 = 2 GP defined by [27]

H(z) = Hycosz + Hysinz , (63)

where Hi, H, are independent N x N random matri-
ces drawn from the appropriate GE. Equation (63) is
a special case of the construction (33) with L = 27 and
f(z) = cosz. For these computations we generate 300
GP simulations with V = 150, using only the middle
third of the states where the level density is approxi-
mately flat. The average is taken over the different states,
parameter values, and simulations.

To illustrate the possibility of computing any universal

PC using the GP (63) we first use it to obtain the known
J
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FIG. 3. Universal form of the level velocity correlator
c(z — z') (62) for the orthogonal (dashed) and unitary (dot-
ted) cases, obtained from 300 simulations the GP (63) with
N = 150 using the middle third of the spectrum. The results
are identical to those of Ref. [10].

universal form of the velocity PC ¢(Z). Figure 3 shows
the results for both the orthogonal and the unitary cases,
which are identical to those of Ref. [10]. As the parame-
ter varies, the velocities become anticorrelated due to the
oscillations of the levels and later decorrelate. The decor-
relation is accelerated by the breaking of time-reversal
symmetry.
The level density PC

k(E - E'\z—a') = p(E,z)p(E, '),

B(E.x) = Alp(B,a) 7l = Ap(B,a) 1 (64)

was derived analytically in Ref. [10] for an electron dif-
fusing in a random potential in the presence and absence
of a magnetic field. This PC was also calculated in [13]
for the random-matrix model H(z) = Hy + zU, where
Hj is a random matrix from the appropriate GE and U is
a fixed traceless matrix, giving the same universal forms.

Now we calculate the density PC for the general GP
(1). Our purpose in repeating the calculation for this
more general case is to show that the conjecture given
in Sec. IIT indeed holds in this case, namely, that the N
dependence of this PC is through N(1— f), which implies
that the scaling (56) results in a universal function of
|Z — 2'|” that is independent of N. The density PC (64)
can be written as

2
k(E-E,z-2')= 2A?Re TrG(E—,z)TrG(E't,z')

——TrG(E“,;v)TrG(E’“,w’)] -1,
(65)
where G(E*,z) = [E +146 — H(x)]™ " are the advanced
and retarded Green functions. Using the supersymmetry

method [12,28] to calculate averages of product of Green
functions, we find for the GOP case

(L =2A2)(A1A2 — N)2

1 oo oo
EP=VE - E' z - z') = Re/ d)\/ d)\1/ dA2 3
—1 1 1 (/\1

—Ng|z —2'|"(2A303 — A7 — A2 - A2 +1)],

AT A? = 2aragh — 1)z SXPIT(W + 200 (Aadz — A)

(66)
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where w = (E—E')/A. The expression for the GUP case
is simpler

kP=2E - E',z — &)

1 oo
- %Re / dA / d)y explim(w + 2i8) (A1 — X)
-1 1

—Nklz — 2'|"(A2 — A%)]. (67)

We note that the density PC in both cases is indepen-
dent of a and depends on N only through N(1 — f) =
Nk |z — 2’ |7 [see (58)], in accord with our conjecture.
In particular, for » = 2 the substitution Nx|z — 2'|? =
(Bn?/4)(z—z')? in Eqs. (66) and (67) gives the universal
forms calculated in [10,13].

B. Parametric correlations of eigenfunctions

In Sec. III we argued the universality of all PCs, in-
cluding those involving the eigenfunctions. We proceed
to demonstrate this point by studying several eigenfunc-
tion correlators both numerically and analytically.

The first is the averaged parametric overlap

o(e —2') = [(¥i(=)i(a"))|*, (68)

which measures the decrease in the squared overlap of
an eigenfunction at = and the same eigenfunction at z’
from 0(0) = 1 as z’ separates from z. The second is the
projection PC

p(z — ') = (Bl (@) * (Bl (")) / [{plwi)|?

which measures the correlation between the projections
of ¥; on a normalized fixed state ¢ at different values
of z. Note that (¢|y);) averages to zero so that (69)
is of the general form (45). The projection PC is in-
dependent of the choice of ¢. Indeed, if we chose an-
other vector ¢’ then there would have existed a unitary
transformation U satisfying [¢') = Ul|¢$), which could
have been used to rotate the Hamiltonian matrix H(z)
at each z into H'(z) = UH(z)U' with eigenfunctions
|¥;(x)) = Ulyi(x)). Since the GP probability mea-
sure (4) is invariant under a global rotation, we have
py(x—2') = py (x—z'). In particular, the fixed state can
be taken to be a position eigenstate |¢p) = |F), in which
case p(r — z') measures the correlation between eigen-
functions belonging to different values of = at a given
space point 7:

p(z — ') = 7 () ¢F (7) / [ (P2 .

We note that the projection PC p(z — z'), unlike the
parametric overlap o(z — z’), does depend on the choice
of the eigenfunction phases. For the orthogonal case,
however, 1;(z) are real and determined up to a sign that
is kept fixed as = varies: Since

(69)

(70)
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($i(2)|9i(2)) =1 - O((z - z')?),

the sign of ¥;(z') is determined so that (;(z)|¢:(z')) >
0, while ' — z is made sufficiently small, to ensure that
there is no avoided level crossing in the interval (z,z’).
We used the GP (63) to compute the universal forms
of o(z — z') and p(z — z'). The results are given in the
upper panels of Fig. 4. We find that these correlators

(71)

are approximated very well by simple functions. The
parametric overlap is given by
1 B
P~ | — | 72
o(z — ') [1"_@_3_:/)2/%23] (72)

namely, a Lorentzian of width a; = 0.48 + 0.03 in
the orthogonal case and a squared Lorentzian of width
az = 0.6440.04 in the unitary case, with a x? per degree
of freedom of approximately 1072. Thus the eigenfunc-
tions decorrelate faster in the unitary case than in the
orthogonal case in qualitative agreement with the level
velocity correlator. The projection correlator in the or-
thogonal case is given by

(73)

o= [

GOP

o(x)

0.5 | QR%, .

p(x)

0.0 ! !
0 05 1
x"/?

FIG. 4. Universal forms of the parametric overlap o(z —z')
(68) (top) and the projection correlator p(z — z') (69) (bot-
tom) for the orthogonal (left) and unitary (right) cases. The
squares are the results obtained from simulations of the n = 2
GP (63). The dashed lines show the approximations (72)
and (73). The dotted line shows for each symmetry class
(i.e., orthogonal or unitary) the universal curve of the other
one. Also shown is the parametric overlap o(z — z’) as a
function of |Z — z'|"/? obtained from 100 simulations of the
GP (37) with the process correlation function (60). The
values N = 150, « = 0.5, and n = 1 (diamonds) and
N =100, x = 1.0, and n = 1.5 (circles) were used, taking the
middle third of the spectrum in each case.
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with b = 1.00 + 0.08. a;,a3,b were obtained by least-
squares fits.

It is interesting to verify that these universal forms are
valid also for processes with 7 # 2, as expected from our
general discussion in Sec. III. For that purpose we used
the GP (37) with the correlation (60) to compute the
parametric overlap o(z — z') as a function of |z — Z'|"/2
for different values of N, k, and 7 in the orthogonal and
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unitary cases. The results are presented in Fig. 4 and
show a complete agreement with the form (72) upon the
replacement |Z — z'| — |z — Z/|7/2.

Finally, we introduce a third PC, which we calculate
analytically. This PC, the energy-dependent parametric
overlap o(E — E',z — «'), is related to the parametric
overlap o(z — ') (68) but involves both the energies and
the eigenfunctions. It is given by

o(E — E'x —a') = A¥Y [(4i(2) v (") |*§(E — Ei(x))5(B' - E;(x')) (74)

%3

and measures the averaged parametric overlap of eigenfunctions whose corresponding energies are separated by E—E’.
Similarly to the density PC (64), we calculate o(E — E’,z — ) using the supersymmetry method [12] and therefore

start by expressing it in terms of Green functions

o(E—E'\z—z)= %Rm [G(E—,w)G(E”f,:c’) — G(E-,2)G(E'-, a:’)] . (75)

This calculation is described in the Appendix. For the GOP case, we find

1 oo oo )2 2)2 __ 22 _ )2 __ )2
O(ﬂ:l)(E _ E’,:IJ _ wl) — %Re/ dA/ dAl/ d)\2 (1 A )(2)‘1A2 Al /\2 A + 1)
1 1 1

(AZF X2+ A2 - 2000 — 1)2

x exp [im(w + 2i8) (A Az — A) — Nulz — «'|7(2A303 — Af — A3 - A2 +1)] (76)

where w = (E — E')/A. The GUP expression is simpler:

_ 1 ! A+ A
B=20E-E,z—2z')= = d\ !
o (E-—FE,z—-2z') 4Re/_1 /1 d/\l/\l_/\

As for the density PC (66) and (67), the final results here
depend only on N(1— f) = Nk|z —z'|", confirming once
again our conjecture and exhibiting a universal functional
dependence on |Z — Z'|” upon the scaling (56).

The parametric overlap o(F — E’,z — z') clearly di-
verges at E = E', z = 2z’ as § — 0, as is also the case for
the density PC (64). It is therefore convenient to define
the normalized energy-dependent parametric overlap

6(R,z —z)

D IWi(@) v (@) |*8(Bi(e) + @ - E4(a'))

i,J

> 3(Ei(2) + 2 — E;(a'))

¥

o,z —a)
- EQz—z)+1’

with @ = F — E'. 6(Q2,z — ') measures the weighted
average of the parametric overlap |(4;(z)|4;(z'))|? with
a weight function 6 (E;(x) +Q— E;(z')) that favors states
separated by Q. The universal forms of (78) are shown
in Fig. 5 for § = 0.05A by the solid (GOP) and dotted
(GUP) lines where we have used the analytic expressions
(76) and (77). This correlator exhibits a peak that shifts
to the right and diminishes as w = /A increases. This
feature is expected since at small Q the dominant term
in the sums in both the nominator and the denominator

(78)

explim(w + 2i6) (A1 — A) — N&l|z — '|7(A2 — A?)] . (77)

o(w,X)

os | 1 .

0n

0.0 N bt

FIG. 5. Universal form of the normalized energy-dependent
parametric overlap 6(2,z — z') (78) for the Anderson model
with time-reversal symmetry, compared with the GOP (solid)
and GUP (dotted) predictions given by the analytical expres-
sions in (76) and (77), respectively. The latter also agree
with simulations of the GP (63) with N = 150. Results
for the Anderson model are shown for a cylindrical geometry
with W = 1 (squares) and a toroidal geometry with W = 2
(pluses). We take § = 0.05A.
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of (78) is i = j; thus for E;(z’') to remain correlated
E;(z) + Q as Q increases, ' has to move further away
from z. Note that correlations in the unitary case decay
faster. Calculations based on simulations of the GP (63)
give the same universal forms.

In addition to parametric correlators such as o(z — z')
we also expect the full probability density of the quantity
of interest to become universal upon the same scaling. In
particular, the overlap density

Po—r (| (@) e DI = 1] (79)

of which o(x — z') is the first moment, should become a
universal function of y for a given value of £ — #’. This
will be demonstrated in the context of a physical model
in Sec. V.

V. APPLICATION TO DISORDERED SYSTEMS:
THE ANDERSON MODEL

In the remaining sections we demonstrate the applica-
bility of the Gaussian random-matrix process to physical
systems. We study both a disordered system (Ander-
son model) and a chaotic system. We compute the PCs
introduced in Sec. IV in those systems, perform the scal-
ing procedure, and compare them to the corresponding
universal theoretical predictions of the GP.

The Anderson model [29] is a discretized version of
Schrédinger’s equation —(p 1‘4{)2\11 + VU = EV for
a charged particle moving in a potential V(7) that has
a random component, under the influence of a magnetic
field. The discretization in two dimensions on a n, X n,
square lattice with spacing s between neighboring sites
leads to the matrix eigenvalue equations

2ms?

.. —1
h2 Vvi,.‘i‘IllaJ €

0
wiWiye,j

67 . —z0Y . 0¥ .
—e i \I’i—l,j — e i; ‘I’i,j+1 — e%l; ‘Ili,j—-l

2ms? gs\2 =
= |: 72 E—4— (ﬁc—) A?yj] ‘I’i,j ’ (80)

where é;,]- = %%fi',-,j and i = 1,...,n,, j = 1,...,ny. We
fold the lattice into a cylinder whose symmetry axis is
along = by imposing periodic boundary conditions

(81)

If the magnetic field is pointed along the symmetry axis
and is associated with a flux ¢ through the cylinder, the
vector potential would have a magnitude of A = ¢/nys
and be directed around the cylinder, so 67; = 0 and
0f; = 727’5¢/¢0 = 0, where ¢o = hc/q is the flux unit.
Separating the potential into a fixed part u and a random

part w: 2’,’;"2 V(7) = u(7) + w(7), we rewrite Eq. (80) as
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(wij + i)W — i1 — Piyj

—e 00— e = €Ty (82)

The model is sometimes presented in a second quan-
tized form
H = Z(ua + wa)alan — Z e®=falag , (83)
(aB)

with indices o = (3,7). The random on-site energies wq
are chosen uniformly from interval [—-W/2,W/2]. The
parameter W determines the degree of disorder in the
system. For small W, the two-dimensional system is in
the diffusive regime and the eigenfunctions are extended,
whereas for a sufficiently large W the system crosses over
to the localized regime [30].

We study the Anderson model using a 27 x 27 lattice in
both a cylindrical and a toroidal geometry and different
values of W to verify that the correlators we compute
are insensitive to boundary conditions and to the degree
of disorder, as long as it is sufficiently weak. In the or-
thogonal case we take a cylinder with W = 1 and a torus
with W = 2. The parametric dependence is introduced
by adding an external potential u(7) in the form of a step

GOP

GUP

o(x)

p(x)

-n»g%n
0.0 L L

0 05 1 1.5
X

FIG. 6. Universal forms of the parametric overlap o(z —z')
(68) (top) and the projection correlator p(z — ') (69) (bot-
tom) in the Anderson model compared with the GP predic-
tions (72) and (73) (dashed lines). Left: with time-reversal
symmetry. Results are shown for a cylindrical geometry with
W = 1 (squares) and a toroidal geometry with W = 2
(pluses), using the middle 200 eigenfunctions of the Hamil-
tonian (83) on a 27 x 27 lattice. Right: without time reversal
symmetry. Results are shown for a cylindrical geometry with
W =1 and = = uo the strength of an external potential (cir-
cles) and a toroidal geometry with W = 2 and =z = B’ the
magnitude of an external field (crosses). For each symmetry
class we show by dotted lines (top) the universal curve of the
other one.
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function along x [10]: u(x,y) = uo©(x), with the poten-
tial strength ug serving as the parameter z. In Fig. 6 (left
panels) we present the Anderson model simulations for
o(z —z') (68) and p(x — z') (69) and compare them with
the GOP prediction, reproduced by the simple functional
forms (72) and (73), respectively. The agreement is very
good for both geometries and degrees of disorder.

The unitary case is obtained by applying a magnetic
field B associated with a flux ¢ = /4 [see the paragraph
following (81)] along the cylinder axis. A parametric de-
pendence is introduced either by an external potential as
above or by folding the cylinder into a torus, applying an
additional magnetic field B’ perpendicular to the torus
plane, and taking its magnitude as the parameter . The
latter situation amounts to taking 91-”’ i = (nms2 /2¢>0) B’
in (80). Figure 6 (right) shows that these two situations
produce curves for the scaled correlator o(Z — z'), which
are very close to each other and agree well with the GUP
prediction.

We also compute the normalized energy-dependent
parametric overlap 6(2,z — z’) (78) in the Anderson
model for the orthogonal and unitary cases described
above and compare the results with the corresponding
GOP and GUP predictions given analytically by (76)
and (77), respectively. The agreement is excellent for
all cases, as shown in Figs. 5 and 7 for the orthogonal
and unitary symmetries, respectively.

Finally, we compute the probability density py—.(y)
of the overlap y = |(3;(z)|¢:(z'))| [see Eq. (79)] as a
function of y for several values of Z — #' in the Ander-
son model. In Figs. 8 and 9 we present the results in

o(w,X)
1.0 ¢ T T T T
w=0.00
0.5 +
0.0 f f
w=0.50
05 | + .
oo 1 ] ; g

FIG. 7. Universal form of the normalized energy-dependent
parametric overlap 6(2,z — z’) (78) for the Anderson model
with broken time-reversal symmetry, compared with the GUP
(dotted) prediction (77) (solid lines). Results are shown for a
cylindrical geometry with W = 1 and parametric dependence
z = ug (circles) and a toroidal geometry with W = 2 and
@ = B’ (crosses). We take § = 0.05A. The dotted lines show
corresponding curves (76) for the GOP.
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FIG. 8. Overlap probability density Pe—a

(|(¥:(2)|9i(z"))|?> = y) (79) as a function of y at several values
of £—Z' for the Anderson model with time-reversal symmetry
(solid) compared with the GOP (dashed) and GUP (dotted)
predictions. Results are shown for a cylindrical geometry with
W =1.

a histogram form for the orthogonal and unitary cases,
respectively, and compare them with the GP predictions.
At £ — ' = 0 we of course have p(y) = §(y — 1), whereas
as the distance increases the distribution broadens and
the peak shifts from y = 1 to ¥y = 0 to manifest the

px(y)
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x=0.0 x=0.4
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FIG. 9. Overlap probability density Pz—zt

(I(:(z) [9i(z"))|* = y) (79) as a function of y at several values
of £ — z' for the Anderson model with broken time-reversal
symmetry (solid) compared with the GUP (dashed) and GOP
(dotted) predictions. Results are shown for a cylindrical ge-
ometry with W = 1 and parametric dependence z = 4o and
a toroidal geometry with W = 2 and =z = B’.
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eigenstate decorrelation. Again we observe very good
agreement with the theoretical GP predictions.

VI. APPLICATION TO CHAOTIC SYSTEMS:
THE INTERACTING BOSON MODEL

In this section we demonstrate the success of the GP
framework in describing universal parametric eigenfunc-
tion correlators in chaotic systems. For that purpose
we use a nuclear structure model, the interacting boson
model (IBM) [31]. Since this model has both regular and
chaotic regimes, we can also study deviations from the
universal correlators in the regular case.

The IBM is a phenomenological many-body model,
which has been successful in describing spectra and
electromagnetic transitions of low-lying collective states
of medium- and heavy-mass even-even nuclei. In its
simplest version, the IBM Hamiltonian is a quadratic
function of the 36 generators of the u(6) Lie algebra
{sts, sTd,‘,dLs, de,,;,u,,u = —2,..,2}. st s and dL,d“
are bosonic creation and annihilation operators that
model nucleon pairs coupled to angular momenta of 0
and 2, respectively.

A compact parametrization of the IBM Hamiltonian is
given in the framework of the self-consistent Q formalism
[32]

H = cong + 61E . E + c2Q*XQX . (84)

ng, I_:, and QX are, respectively, the d-boson number,
angular momentum, and quadrupole operators

ng = dfti,
L =Vv10@d x &)V ,
QX = (df x s+ st x &)@ 4 x(dt x )@ , (85)

where d, = (—1)*d_,.

The Hamiltonian (84) is known to be completely inte-
grable [33] when it has a dynamical symmetry, i.e., when
H can be written as a sum of Casimir invariant operators
of a subalgebra chain

H = aoC(g0) + a1C(g1) + a2C(g2) +--- ,
g0Dg1Dg2D - . (86)

In such a case the set of Casimir operators C(g;), comple-
mented by invariant operators (when missing labels occur
in the chain), form a complete set of mutually commut-
ing constants of the motion, rendering the Hamiltonian
completely integrable.

In the IBM we have go =u(6), and since the nu-
clear Hamiltonian is invariant under rotations, each sub-
algebra chain should terminate with o(3). This restric-
tion is fulfilled by three chains only

u(5) D o(5)
su(3)
o(6) D o(5)

u(6) O So(3). (87)
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Chain I [u(5)] is obtained for c; = 0 and describes a
spectrum of a vibrational nucleus. Chain II [su(3)] cor-
responds to cg = 0,x = —+/7/2 and has a rotational
spectrum. Chain III [0(6)] corresponds to cp = 0,x = 0
and describes a spectrum of a y-unstable nucleus.

The IBM Hamiltonian H in (84) has a classical coun-
terpart

H(d,a") = (alH|a) , (88)
where
, 2
|@) = e"% /2 exp (aasT + Z a#dL) |0)
p=—2
o= (asa_z,...,02) (89)

are the Glauber coherent states for the s,d bosons and
|0) is the vacuum state [34] and a, can be interpreted
as the nuclear quadrupole shape variables. Canonical
Hamilton’s equations derived from (88), where & and ia*
play the role of conjugate coordinates and momenta, are
equivalent to the time-dependent mean-field equations in
the limit of large boson number N. Therefore 1/A plays
the role of 4 in the quantum-classical correspondence for
this model.

The chaotic dynamics of the IBM has been stud-
ied in [33] both classically and quantum mechanically.
Here we study its parametric correlations in the regime
co =0, c; =0, —0.8 < x < —0.5, which lies in between

Chaotic Regular
T T T T
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% %,
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e
LY s
C) " N
= 05 — % - \(‘: . —
By "X
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oo 1 1 1 1
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FIG. 10. Parametric overlap o(z — z') (68) (top) and the
projection correlator p(z — z') (69) (bottom) in the IBM in a
chaotic regime (left) and in a regular regime (right), compared
with the GOP (dashed) predictions (72) and (73). In the
chaotic case results are shown for J = 2 (pluses), where 80
states out of 117 are used, and J = 6 (squares), using 130
states out of 184. In the regular regime results are shown for
J = 2 (crosses), where 80 states out of 117 are used, and for
J = 6 (pluses) with 130 states out of 184.
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the rotational (x = —/7/2) and v-unstable (x = 0) dy-
namical symmetry limits. In this region the classical dy-
namics was found to be strongly chaotic and spectral
fluctuations as well as electromagnetic E2 transition in-
tensities distributions were in good agreement with RMT
[33]. We compute o(z —z') (68) and p(z —z') (69) in the
IBM for 25 bosons using x as the parameter z. Since the
total angular momentum J of a nucleus is a conserved
quantum number, we can study these correlators for dif-
ferent values of J. The results for J = 2 and J = 6 are
presented in Fig. 10 (top panels), where they are seen to
be in good agreement with the GOP predictions (72) and
(73).

In the IBM we can examine PCs in regular regimes
as well, where deviations from the universal forms are
expected. We considered the parameter regime between
the y-unstable and vibrational dynamical symmetry lim-
its where x = 0 and replacing the parameters cg,cz in
(84) by co =&, c2 =1—§ with 0 < ¢ < 1. In this regime
there is a common o(5) symmetry and the Hamiltonian
is completely integrable [33]. We computed o(z —z') and
p(z — ') for 0.1 < £ < 0.3. The results after scaling
are presented in Fig. 10 (bottom panels) and show a
marked deviation from the GOP behavior. For small
the IBM curves are slightly below those of the GOP. For
larger values of Z, however, the IBM correlators decay
considerably more slowly than their universal counter-
parts, indicating the existence of stronger correlations in
the regular case. Although the regular results are not ex-
pected to be universal, it would be interesting to study
PCs in other regular systems and determine whether the
qualitative features found here, in particular the slower
decay of correlations, would turn out to be general.

VII. CONCLUSION

We have introduced the Gaussian random-matrix pro-
cess, a direct generalization of Dyson’s Gaussian ensem-
bles, and shown that this framework is suitable for the
discussion of parametric correlation functions. All GPs
can be classified by a single parameter 0 < 5 < 2 that
characterizes the short-distance diffusive behavior of the
unfolded energy levels Ae2 = DAz". Most physical
systems correspond to the class 7 = 2 of differentiable
GPs. The universality of all correlators under the level-
diffusion scaling # — & = D/"z emerges naturally in
this framework and any correlator can be easily obtained
from random-matrix simulations. Focusing on eigenfunc-
tion correlators, we have demonstrated their universality
in chaotic and disordered systems as well as their sensi-
tivity to time-reversal symmetry breaking.
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APPENDIX: THE SUPERSYMMETRY METHOD

Here we describe in some detail the calculations lead-
ing to the results (66) and (67) for the level density PC
and (76) and (77) for the energy-dependent parametric
overlap. We use the supersymmetry method invented by
Efetov [12] (for a review see [28]). This method facilitates
RMT calculations (e.g., PCs), which may be hard to per-
form using the orthogonal polynomials technique [2]. It
is also non-perturbative and is therefore advantageous
in comparison with the disorder perturbation theory [30]
and the replica method [35].

In order to use the supersymmetry method the quan-
tity to be calculated must be expressed in terms of Green
functions. These are written as a Gaussian integral over
a graded vector W¥:

G(E*) = :Fi/d\lf(ssf)exp [i%WT(Ei - H)q:] . (A1)

If H is an N-dimensional matrix, ¥ is 4N dimensional
and is defined in terms of the vector S of commuting
variables and the vector x of anticommuting variables,
both of dimension N:

‘P:(SHS’*’X»X*) 3 ‘II* = (ST,STyva_XT) . (A2)
The integration measure in (A1) is
" [d(ReS;)d(ImS;)
d¥ = SV A T Ay dws |
iI:_[l [ ~ dx; dXz] (A3)
Correlators such as (65) and (75) require av-

eraiing products of two Green functions, namely,
AT = Tr[G(E-,2)Tr[G(E'*,2')] and A;* =
Tr[G(E—,z)G(E'*, z')], respectively. We write

A = /d‘I’ Pr,o(P) exp [%‘1’* (—FA + —g + iS) \I/]

xexp (%\I/TAH\II) : (A4)

where ¥ = (¥, ¥,) (A2) and the matrices H and A are

H=(H(z)xﬁ(m')x14) ’

_ IN><I4
A—( —INXI4)'

The notation M x I,, refers to the block diagonal matrix
with n blocks M. Both ¥, H, and A are of dimension 8 N.
The preexponential factors are px(¥) = (5751)(S1S2) =
HETTEP) (P T0P) and po(¥) = (5]S:)(S}51) =
%(\Ilff\IIZB)(\Iszt\IIf) with the superscript B referring to
the commuting part of ¥. We have also defined the en-
ergy mean E = (E + E')/2 and difference Q = E — E'.
Since the term in the exponent in (A4) is a Gaussian ran-
dom variable, we can easily perform the GP average to
obtain (with a — a/N to facilitate the steepest-descent
treatment below)

(A5)
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exp (%\IITAH\II) = exp [—%(\I'TAH\I')Z]

a2

— exp (—mngw)) . (a8)

where A is a graded 8 x 8 matrix that is quadratic in the
components of ¥ and depends on f = f(z — z'). It is
convenient to separate out the f dependence by defining
A in terms of a graded 8 x 8 matrix A, given by

A=iAYV2T @ UtAY2, (A7)
A is then given by
i A VFTAi 1+VFf 1-Vf
A= = A AAA, (A8
(\/71121 Azz 2 t 3 (A8)

where the subscripts 1,2 refer to ¥;, ¥, in (A4). Us-
ing (A7) and (A8) it can be easily shown that 10 =
iTrg(AA) and (A4) can be rewritten as

At = /d‘l’ Pk,o(T) exp (—%E\IITA\I/)
2 : 1/9Q .
X exp [—S—GN—’I‘rg(Az) -3 (5 + i(S) Trg(AA)] .
(A9)

The integral representation (A4), which had a random
component and a quadratic action, has now been trans-
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formed into (A9), which has no randomicity but a quartic
action. Next, the quartic part is reduced to quadratic by
a Hubbard-Stratonovich transformation

a?

exp [—S—N'Prg(fp) -2 (% + i&) Trg(/iA)}

N i -
= /dRexp [—Zﬁ’l‘rg(Rz) - %Trg(RA)

_i% (% + i&) Trg(RA)] : (A10)
which holds in the limit NV — oo if § € A. R is a graded
8 x 8 and consists of 16 commuting and 16 anticommut-
ing independent variables and parametrizes the graded
Lie group UOSP(2,2/2,2) [see [28] for a discussion of
the symmetry properties of R and the convergence issue,
which motivates the third term in the exponent on the
right-hand side of (A10)].
Using (A10) together with

Trg(RA) = Trg(RA) = —iWtAY2RAY2® | (A11)

where

g=1 +2‘/73 + 1=V hpa (A12)

2

[see (A8)], we can now write (A9) as

ALt = /dR exp [—%Trg(Rz) —ig (% +i6) ’I‘rg(RA)] /d\If Pk,o(¥) exp [—%\P*Al/z(fi+if)1\1/2\ll] . (A13)

Performing the ¥ integral exactly, we obtain

A,;j; = /dR Pr,o(R)

N (Q .
X exp l:—z;z—i (5 + z&) Trg(RA)

+5Nrle — 2/["Txg[(R + iE) " (ARA - R)]]

X exp [—%Trg(Rz) + ]—;—Trg[ln(R + 1E)]] ,
(A14)

using (A12) and the short-distance expansion for f (51).
The 8N-dimensional integral expression (A9) has now
been reduced to a 32-dimensional one. A steepest-descent
treatment [28] gives

™

Al = / dQ Pio(Q) exp [—iﬁ (% + ié) Trg(QA)

+T1§N'€|z - 2'|"Trg([Q, A]2)} ; (A15)

where @ is an 8 x 8 graded matrix consisting of 8
commuting and 8 anticommuting independent variables,
which parametrizes the saddle-point manifold. The pre-
exponential factors become pr (Q) = 1TrQEZBTrQZP and
Po(Q) = ;TrQFETrQEB, where the ¥; and ¥, bosonic
and fermionic components of ) are arranged as in ¥ x 1,

In order to perform the Q integration it is convenient to
use Efetov’s parametrization [12], which has the advan-
tage that the term in the exponent includes only com-
muting variables. Q is decomposed into Q = UWU,
where all the anticommuting variables 71,72, p1, p2 are
contained in U, which depends also on the commuting
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variables 0 < ¢,x < m, m real, and m; complex. The
rest of the commuting variables §; , > 0and 0 <0 <7
are contained in W (see [12] for the details, including the
integration measure dQ). The preexponential factor in
the orthogonal case is found to be

Pe(Q) = —2'2(cosh 8; cosh 6, — cos 6)?
XMy mmsn2psp1Psp2 — 4cos? G,

2
Po(Q) = [2'%sin?(8) 1—m?=|m [*
° 1+ m2+ | my |2

4210 (sinh2 61 cosh? 03 + cosh? 6, sinh? 02):|
XN MN3M201 P1P2P2

1—m2—|my |2 2
4sin?(0) [ ——M— 1
+4 sin®( )<1+m2+|m1 |2) ,

keeping only the terms of order 8 and 0 in the non-

(A16)
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commuting variables since the others vanish upon in-
tegration. The integrations over all the variables are
elementary except for A = cosf, A\; = cosh#;, and
A2 = cosh @, in terms of which the final results (66) and
(76) are expressed. It is easy to show that

4, = Tr[G(E-, =) TX[G(E'~, 2')]

= Tr[G(E-, z)] Tr[G(E—, z'))] (A17)

because there exists only a saddle point rather than a
manifold, whereas

A" =Tr[G(E-,z)G(E'%,z')] =0 (A18)
due to the vanishing of the preexponential factor po(Q).
A similar calculation using the appropriate parametriza-
tion for the unitary case [12] leads to the results (67) and
(77).
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